Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jens Hartung, ${ }^{\text {a }}$ Ingrid Svoboda, ${ }^{\text {b }}$ Philipp Schmidt ${ }^{\text {c }}$ and Hartmut Fuess ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Fachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany, ${ }^{\mathbf{b}}$ Strukturforschung, FB11 Materialund Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, D-64287
Darmstadt, Germany, and ${ }^{\text {c Institut für }}$
Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Correspondence e-mail:
hartung@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.062$
$w R$ factor $=0.208$
Data-to-parameter ratio $=15.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Racemic trans-4-phenylperhydropyran-3-ol

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$, the tetrahydropyran ring adopts a ${ }^{1} C_{4}$ conformation, with the phenyl and the hydroxy substituents located in equatorial positions. Hydrogen bonding occurs in the solid state between hydroxy groups to link two molecules of (R, R)-trans-4-phenylperhydropyran-3ol and two molecules of the (S, S)-enantiomer to provide tetramers.

Comment

Atoms C3 and C4 in trans-4-phenylperhydropyran-3-ol, (I), are chiral centres. The racemate of (I) was prepared as the minor product from the reaction between 3-phenyl-4-penten1 -ol and m-chloroperbenzoic acid ($m \mathrm{CPBA}$) (Hartung et al., 2003). The compound was crystallized and investigated by X-ray diffraction, in order to establish reference data for a planned conformational analysis of multiply substituted tetrahydropyrans.

(I)

In $(3 S, 4 S)-(\mathrm{I})$, atoms O 1 and C 4 are displaced in opposite directions [0.655 (4) \AA for O 1 and -0.648 (5) \AA for C4] from the tetrahydropyran plane, which is defined by atoms $\mathrm{C} 2, \mathrm{C} 3$, C5 and C6 [deviation of atom C6 is -0.040 (7) \AA] (Fig. 1). This geometry $\left({ }^{1} C_{4}\right)$ corresponds to the major conformation of (I) in CDCl_{3} solution, as established from the magnitude of the vicinal proton-proton coupling constants (${ }^{1} \mathrm{H}$ NMR). The interplanar angle between the segments C2/O1/C6 and C2/C3/ C5/C6 is $52.9(3)^{\circ}$. This value is larger than the inclination between the $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5$ and $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 5 / \mathrm{C} 6$ planes $\left[46.0(3)^{\circ}\right]$. The bond lengths within the heterocyclic core increase along the series $\mathrm{O} 1-\mathrm{C} 2<\mathrm{O} 1-\mathrm{C} 6<\mathrm{C} 2-\mathrm{C} 3<\mathrm{C} 5-\mathrm{C} 6<\mathrm{C} 4-\mathrm{C} 5<$ $\mathrm{C} 3-\mathrm{C} 4$ (Table 1). The phenyl and hydroxy substituents are

Figure 1
Molecular structure of $(3 R, 4 R)$-(I) (right) and ($3 S, 4 S$)-(I) (left). Displacement ellipsoids are plotted at the 50% probability level.

Received 18 May 2005 Accepted 27 June 2005 Online 6 July 2005

Figure 2
Intermolecular hydrogen-bond formation (dashed lines) between two molecules of $(3 R, 4 R)-(\mathrm{I})$ and two of $(3 S, 4 S)-(\mathrm{I})$ [view along 010]. The letter i marks a centre of inversion.
located in equatorial positions $\left[\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=172.6(2)^{\circ}\right.$ and $\left.\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6=-177.7(3)^{\circ}\right]$. The phenyl ring is twisted by $75.0(1)^{\circ}$ from the tetrahydropyran plane. The absolute values of the six endocyclic tetrahydropyran torsion angles sum to $336(2)^{\circ}$. The structures of the two independent molecules in the asymmetric unit are very similar (Table 1 and Fig. 1).

The unit cell comprises two molecules of $(3 R, 4 R)$-(I) and two of the $(3 S, 4 S)$ enantiomer. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}$ bonding (Table 2) links two molecules of $(3 R, 4 R)-(\mathrm{I})$ with two molecules of $(3 S, 4 S)$-(I) to provide tetramers (Fig. 2).

Experimental

Compound (I) was obtained as a side product (32%) from the oxidation of racemic 3-phenyl-4-penten-1-ol with m CPBA (Cook \& Djerassi, 1973) in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 298 K (Hartung et al., 2003). Colourless prisms (m.p. 346 K) suitable for X-ray diffraction crystallized from a solution of (I) in diethyl ether upon slow addition of petroleum ether.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \\
& M_{r}=178.22 \\
& \text { Triclinic, } P \overline{1} \\
& a=9.580(3) \AA \\
& b=10.015(1) \AA \\
& c=10.670(2) \AA \\
& \alpha=77.38(1)^{\circ} \\
& \beta=85.68(2)^{\circ} \\
& \gamma=73.55(1)^{\circ} \\
& V=958.0(4) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.236 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=2.6-12.4^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=299(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.50 \times 0.22 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none

$$
h=-11 \rightarrow 1
$$ 4247 measured reflections 3738 independent reflections 1776 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.160$

$$
\theta_{\max }=26.0^{\circ}
$$

$h=-11 \rightarrow 1$
$k=-12 \rightarrow 11$

$$
l=-13 \rightarrow 13
$$

3 standard reflections frequency: 120 min intensity decay: 13.9%

Refinement

Refinement on F^{2}
Refinement on $\left.F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.208$
$S=0.90$
3738 reflections
241 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.113 P)^{2}\right. \\
+0.3203 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.068 \\
\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

C2-O1	1.419 (4)	C13-O3	1.420 (5)
C2-C3	1.508 (4)	C14-O4	1.418 (4)
C3-O2	1.424 (4)	C14-C15	1.521 (4)
C3-C4	1.531 (4)	C15-C18	1.510 (4)
C4-C7	1.526 (4)	C15-C16	1.530 (4)
C4-C5	1.526 (4)	C16-C17	1.506 (5)
C5-C6	1.514 (5)	C17-O3	1.416 (5)
C6-O1	1.433 (4)		
O1-C2-C3	112.9 (3)	C15-C14-C13	110.5 (3)
C2-C3-C4	111.2 (2)	C16-C15-C14	109.0 (3)
C5-C4-C3	108.9 (2)	C17-C16-C15	110.8 (3)
C6-C5-C4	111.0 (3)	O3-C17-C16	112.1 (3)
O1-C6-C5	111.3 (3)	C2-O1-C6	110.5 (3)
O3-C13-C14	111.4 (3)	C13-O3-C17	111.4 (3)
O1-C2-C3-C4	-55.3 (4)	C14-C15-C16-C17	-51.7 (4)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	50.4 (3)	C15-C16-C17-O3	55.8 (5)
C3-C4-C5-C6	-52.0 (3)	C3-C2-O1-C6	59.8 (4)
C4-C5-C6-O1	58.0 (4)	C5-C6-O1-C2	-60.8 (4)
O3-C13-C14-C15	-57.5 (4)	C14-C13-O3-C17	60.6 (4)
C13-C14-C15-C16	52.5 (4)	C16-C17-O3-C13	-59.9 (5)

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 C \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.91(4)$	$1.92(4)$	$2.823(3)$	$168(3)$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.79(4)$	$1.97(4)$	$2.750(3)$	$169(4)$
Symmetry codes: (i) $-x,-y+1,-z+1 ;$ (ii) $x-1, y+1, z$				

Atoms $\mathrm{H} 2 C$ and $\mathrm{H} 4 A$ were located in a difference Fourier map. The atomic coordinates of H 2 C and $\mathrm{H} 4 A$ were refined with the $U_{\text {iso }}(\mathrm{H})$ value set at $1.2 U_{\text {eq }}$ of O 2 and O 4 , respectively. All other H atoms were positioned geometrically and treated as riding atoms $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$, with the $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}$ of the parent atom.

organic papers

Data collection: CAD-4 Diffractometer Control Software (Nonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: CAD-4 Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Ha1705/8-1).

References

Cook, M. M. \& Djerassi, C. (1973). J. Am. Chem. Soc. 95, 3678-3686.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hartung, J., Drees, S., Greb, M., Schmidt, P., Svoboda, I., Fuess, H., Murso, A. \& Stalke, D. (2003). Eur. J. Org. Chem. pp. 2388-2408.
Nonius (1993). CAD-4 Diffractometer Control Software. Release 5.1. Nonius GmbH, Solingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

