Received 18 May 2005 Accepted 27 June 2005

Online 6 July 2005

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Jens Hartung,^a Ingrid Svoboda,^b Philipp Schmidt^c and Hartmut Fuess^b*

^aFachbereich Chemie, Organische Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-67663 Kaiserslautern, Germany, ^bStrukturforschung, FB11 Materialund Geowissenschaften, Technische Universität Darmstadt, Petersenstrasse 23, D-64287 Darmstadt, Germany, and ^cInstitut für Organische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Correspondence e-mail: hartung@chemie.uni-kl.de

Key indicators

Single-crystal X-ray study T = 299 K Mean σ (C–C) = 0.005 Å R factor = 0.062 wR factor = 0.208 Data-to-parameter ratio = 15.5

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.

Racemic trans-4-phenylperhydropyran-3-ol

In the title compound, $C_{11}H_{14}O_2$, the tetrahydropyran ring adopts a ${}^{1}C_{4}$ conformation, with the phenyl and the hydroxy substituents located in equatorial positions. Hydrogen bonding occurs in the solid state between hydroxy groups to link two molecules of (R,R)-trans-4-phenylperhydropyran-3ol and two molecules of the (S,S)-enantiomer to provide tetramers.

Comment

Atoms C3 and C4 in *trans*-4-phenylperhydropyran-3-ol, (I), are chiral centres. The racemate of (I) was prepared as the minor product from the reaction between 3-phenyl-4-penten-1-ol and m-chloroperbenzoic acid (mCPBA) (Hartung et al., 2003). The compound was crystallized and investigated by X-ray diffraction, in order to establish reference data for a planned conformational analysis of multiply substituted tetrahydropyrans.

In (3S,4S)-(I), atoms O1 and C4 are displaced in opposite directions [0.655 (4) Å for O1 and -0.648 (5) Å for C4] from the tetrahydropyran plane, which is defined by atoms C2, C3, C5 and C6 [deviation of atom C6 is -0.040(7) Å] (Fig. 1). This geometry $({}^{1}C_{4})$ corresponds to the major conformation of (I) in CDCl₃ solution, as established from the magnitude of the vicinal proton–proton coupling constants (¹H NMR). The interplanar angle between the segments C2/O1/C6 and C2/C3/ C5/C6 is 52.9 (3)°. This value is larger than the inclination between the C3/C4/C5 and C2/C3/C5/C6 planes $[46.0 (3)^{\circ}]$. The bond lengths within the heterocyclic core increase along the series O1 - C2 < O1 - C6 < C2 - C3 < C5 - C6 < C4 - C5 < C5 - C6 < C5C3-C4 (Table 1). The phenyl and hydroxy substituents are

Figure 1 © 2005 International Union of Crystallography Molecular structure of (3R,4R)-(I) (right) and (3S,4S)-(I) (left). Displacement ellipsoids are plotted at the 50% probability level.

Printed in Great Britain - all rights reserved

Figure 2

Intermolecular hydrogen-bond formation (dashed lines) between two molecules of (3R,4R)-(I) and two of (3S,4S)-(I) [view along 010]. The letter i marks a centre of inversion.

located in equatorial positions $[O2-C3-C4-C5 = 172.6 (2)^{\circ}]$ and $C7-C4-C5-C6 = -177.7 (3)^{\circ}]$. The phenyl ring is twisted by 75.0 (1)° from the tetrahydropyran plane. The absolute values of the six endocyclic tetrahydropyran torsion angles sum to 336 (2)°. The structures of the two independent molecules in the asymmetric unit are very similar (Table 1 and Fig. 1).

The unit cell comprises two molecules of (3R,4R)-(I) and two of the (3S,4S) enantiomer. Intermolecular O-H···OH bonding (Table 2) links two molecules of (3R,4R)-(I) with two molecules of (3S,4S)-(I) to provide tetramers (Fig. 2).

Experimental

Compound (I) was obtained as a side product (32%) from the oxidation of racemic 3-phenyl-4-penten-1-ol with *m*CPBA (Cook & Djerassi, 1973) in a solution of CH₂Cl₂ at 298 K (Hartung *et al.*, 2003). Colourless prisms (m.p. 346 K) suitable for X-ray diffraction crystallized from a solution of (I) in diethyl ether upon slow addition of petroleum ether.

Crystal data

$C_{11}H_{14}O_2$	Z = 4
$M_r = 178.22$	$D_x = 1.236 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 9.580 (3) Å	Cell parameters from 25
b = 10.015 (1) Å	reflections
c = 10.670 (2) Å	$\theta = 2.6 - 12.4^{\circ}$
$\alpha = 77.38 \ (1)^{\circ}$	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 85.68 \ (2)^{\circ}$	T = 299 (2) K
$\gamma = 73.55 \ (1)^{\circ}$	Prism, colourless
V = 958.0 (4) Å ³	$0.50 \times 0.22 \times 0.10 \ \mathrm{mm}$

Data collection

Nonius CAD-4 diffractometer				
$\omega/2\theta$ scans				
Absorption correction: none				
4247 measured reflections				
3738 independent reflections				
1776 reflections with $I > 2\sigma(I)$				
$R_{\rm int} = 0.160$				

Refinement

.

-2

$\theta_{\rm max} = 26.0^{\circ}$
$h = -11 \rightarrow 1$
$k = -12 \rightarrow 11$
$l = -13 \rightarrow 13$
3 standard reflections
frequency: 120 min
intensity decay: 13.9%

.....

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.113P)^2 \\ &+ 0.3203P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.068 \\ \Delta\rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

 Table 1

 Selected geometric parameters (Å, °).

e i	x ,	·	
C2-01	1.419 (4)	C13-O3	1.420 (5)
C2-C3	1.508 (4)	C14-O4	1.418 (4)
C3-O2	1.424 (4)	C14-C15	1.521 (4)
C3-C4	1.531 (4)	C15-C18	1.510 (4)
C4-C7	1.526 (4)	C15-C16	1.530 (4)
C4-C5	1.526 (4)	C16-C17	1.506 (5)
C5-C6	1.514 (5)	C17-O3	1.416 (5)
C6-O1	1.433 (4)		
O1-C2-C3	112.9 (3)	C15-C14-C13	110.5 (3)
C2-C3-C4	111.2 (2)	C16-C15-C14	109.0 (3)
C5-C4-C3	108.9 (2)	C17-C16-C15	110.8 (3)
C6-C5-C4	111.0 (3)	O3-C17-C16	112.1 (3)
O1-C6-C5	111.3 (3)	C2-O1-C6	110.5 (3)
O3-C13-C14	111.4 (3)	C13-O3-C17	111.4 (3)
O1-C2-C3-C4	-55.3 (4)	C14-C15-C16-C17	-51.7 (4)
C2-C3-C4-C5	50.4 (3)	C15-C16-C17-O3	55.8 (5)
C3-C4-C5-C6	-52.0(3)	C3-C2-O1-C6	59.8 (4)
C4-C5-C6-O1	58.0 (4)	C5-C6-O1-C2	-60.8(4)
O3-C13-C14-C15	-57.5 (4)	C14-C13-O3-C17	60.6 (4)
C13-C14-C15-C16	52.5 (4)	C16-C17-O3-C13	-59.9(5)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O2 - H2C \cdots O4^{i} \\ O4 - H4A \cdots O2^{ii} \end{array}$	0.91 (4)	1.92 (4)	2.823 (3)	168 (3)
	0.79 (4)	1.97 (4)	2.750 (3)	169 (4)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x - 1, y + 1, z.

Atoms H2*C* and H4*A* were located in a difference Fourier map. The atomic coordinates of H2*C* and H4*A* were refined with the $U_{\rm iso}({\rm H})$ value set at $1.2U_{\rm eq}$ of O2 and O4, respectively. All other H atoms were positioned geometrically and treated as riding atoms (C-H = 0.93–0.98 Å), with the $U_{\rm iso}({\rm H})$ values set at $1.2U_{\rm eq}$ of the parent atom.

Data collection: *CAD-4 Diffractometer Control Software* (Nonius, 1993); cell refinement: *CAD-4 Diffractometer Control Software*; data reduction: *CAD-4 Diffractometer Control Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003) and *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Ha1705/8-1).

References

Cook, M. M. & Djerassi, C. (1973). J. Am. Chem. Soc. 95, 3678-3686.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hartung, J., Drees, S., Greb, M., Schmidt, P., Svoboda, I., Fuess, H., Murso, A. & Stalke, D. (2003). Eur. J. Org. Chem. pp. 2388–2408.
- Nonius (1993). CAD-4 Diffractometer Control Software. Release 5.1. Nonius GmbH, Solingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.